Osterix acetylation at K307 and K312 enhances its transcriptional activity and is required for osteoblast differentiation
نویسندگان
چکیده
Osterix (Osx) is an essential transcription factor involved in osteoblast differentiation and bone formation. The precise molecular mechanisms of the regulation of Osx expression are not fully understood. In the present study, we found that in cells, both endogenous and exogenous Osx protein increased after treatment with histone deacetylase inhibitors Trichostatin A and hydroxamic acid. Meanwhile, the results of immunoprecipitation indicated that Osx was an acetylated protein and that the CREB binding protein (CBP), and less efficiently p300, acetylated Osx. The interaction and colocalization of CBP and Osx were demonstrated by Co-immunoprecipitation and immunofluorescence, respectively. In addition, K307 and K312 were identified as the acetylated sites of Osx. By contrast, HDAC4, a histone deacetylase (HDAC), was observed to interact and co-localize with Osx. HDAC4 was demonstrated to mediate the deacetylation of Osx. Moreover, we found that acetylation of Osx enhanced its stability, DNA binding ability and transcriptional activity. Finally, we demonstrated that acetylation of Osx was required for the osteogenic differentiation of C2C12 cells. Taken together, our results provide evidence that CBP-mediated acetylation and HDAC4-mediated deacetylation have critical roles in the modification of Osx, and thus are important in osteoblast differentiation.
منابع مشابه
Runx3 negatively regulates Osterix expression in dental pulp cells.
Osterix, a zinc-finger-containing transcription factor, is required for osteoblast differentiation and bone formation. Osterix is also expressed in dental mesenchymal cells of the tooth germ. However, transcriptional regulation by Osterix in tooth development is not clear. Genetic studies in osteogenesis place Osterix downstream of Runx2 (Runt-related 2). The expression of Osterix in odontoblas...
متن کاملRegulation of the osteoblast-specific transcription factor Osterix by NO66, a Jumonji family histone demethylase
Osterix (Osx) is an osteoblast-specific transcription factor required for osteoblast differentiation and bone formation. Osx null mice develop a normal cartilage skeleton but fail to form bone and to express osteoblast-specific marker genes. To better understand the control of transcriptional regulation by Osx, we identified Osx-interacting proteins using proteomics approaches. Here, we report ...
متن کاملOsterix represses adipogenesis by negatively regulating PPARγ transcriptional activity
Osterix is a novel bone-related transcription factor involved in osteoblast differentiation, and bone maturation. Because a reciprocal relationship exists between adipocyte and osteoblast differentiation of bone marrow derived mesenchymal stem cells, we hypothesized that Osterix might have a role in adipogenesis. Ablation of Osterix enhanced adipogenesis in 3T3-L1 cells, whereas overexpression ...
متن کاملExpression of osterix Is Regulated by FGF and Wnt/β-Catenin Signalling during Osteoblast Differentiation
Osteoblast differentiation from mesenchymal cells is regulated by multiple signalling pathways. Here we have analysed the roles of Fibroblast Growth Factor (FGF) and canonical Wingless-type MMTV integration site (Wnt/β-Catenin) signalling pathways on zebrafish osteogenesis. We have used transgenic and chemical interference approaches to manipulate these pathways and have found that both pathway...
متن کاملNELL-1, an Osteoinductive Factor, Is a Direct Transcriptional Target of Osterix
NELL-1 is a novel secreted protein associated with premature fusion of cranial sutures in craniosynostosis that has been found to promote osteoblast cell differentiation and mineralization. Our previous study showed that Runx2, the key transcription factor in osteoblast differentiation, transactivates the NELL-1 promoter. In this study, we evaluated the regulatory involvement and mechanisms of ...
متن کامل